viernes, 12 de marzo de 2010

Carrier recombination and generation

Recombination of electrons and holes is a process by which both carriers annihilate each other: electrons occupy - through one or multiple steps - the empty state associated with a hole. Both carriers eventually disappear in the process. The energy difference between the initial and final state of the electron is released in the process. This leads to one possible classification of the recombination processes. In the case of radiative recombination, this energy is emitted in the form of a photon. In the case of non-radiative recombination, it is passed on to one or more phonons and in the case of Auger recombination it is given off in the form of kinetic energy to another electron. Another classification scheme considers the individual energy levels and particles involved. These different processes are further illustrated with Figure 2.8.1.



Figure 2.8.1 : Carrier recombination mechanisms in semiconductors
 
 

Band-to-band recombination occurs when an electron moves from its conduction band state into the empty valence band state associated with the hole. This band-to-band
transition is typically also a radiative transition in direct bandgap semiconductors.

Trap-assisted recombination occurs when an electron falls into a "trap", an energy level within the bandgap caused by the presence of a foreign atom or a structural defect. Once the trap is filled it cannot accept another electron. The electron occupying the trap, in a second step, moves into an empty valence band state, thereby completing the recombination process. One can envision this process as a two-step transition of an electron from the conduction band to the valence band or as the annihilation of the electron and hole, which meet each other in the trap. We will refer to this process as Shockley-Read-Hall (SRH) recombination.

Auger recombination is a process in which an electron and a hole recombine in a band-to-band transition, but now the resulting energy is given off to another electron or hole. The involvement of a third particle affects the recombination rate so that we need to treat Auger recombination differently from band-to-band recombination.

Each of these recombination mechanisms can be reversed leading to carrier generation rather than recombination. A single expression will be used to describe recombination as well as generation for each of the above mechanisms.

In addition, there are generation mechanisms, which do not have an associated recombination mechanism, such as generation of carriers by light absorption or by a high-energy electron/particle beam. These processes are referred to as ionization processes. Impact ionization, which is the generation mechanism associated with Auger recombination, also belongs to this category. The generation mechanisms are illustrated with Figure 2.8.2.

Figure 2.8.2 : Carrier generation due to light absorption and ionization due to high-energy particle beams
 
 
 

Carrier generation due to light absorption occurs if the photon energy is large enough to raise an electron from the valence band into an empty conduction band state, thereby generating one electron-hole pair. The photon energy needs to be larger than the bandgap energy to satisfy this condition. The photon is absorbed in this process and the excess energy, Eph - Eg, is added to the electron and the hole in the form of kinetic energy.

Carrier generation or ionization due to a high-energy beam consisting of charged particles is similar except that the available energy can be much larger than the bandgap energy so that multiple electron-hole pairs can be formed. The high-energy particle gradually loses its energy and eventually stops. This generation mechanism is used in semiconductor-based nuclear particle counters. As the number of ionized electron-hole pairs varies with the energy of the particle, one can also use such detector to measure the particle energy.

Finally, there is a generation process called impact ionization, the generation mechanism that is the counterpart of Auger recombination. Impact ionization is caused by an electron/hole with an energy, which is much larger/smaller than the conduction/valence band edge. The detailed mechanism is illustrated with Figure 2.8.3.

Figure 2.8.3: Impact ionization and avalanche multiplication of electrons and holes in the presence of a large electric field. 
 
 

The excess energy is given off to generate an electron-hole pair through a band-to-band transition. This generation process causes avalanche multiplication in semiconductor diodes under high reverse bias: As one carrier accelerates in the electric field it gains energy. The kinetic energy is given off to an electron in the valence band, thereby creating an electron-hole pair. The resulting two electrons can create two more electrons which generate four more causing an avalanche multiplication effect. Electrons as well as holes contribute to avalanche multiplication.

 
 

Estudiante:
Leonardo Andrés Márquez Fernández.
Electrónica del Estado Sólido.




Get news, entertainment and everything you care about at Live.com. Check it out!

No hay comentarios:

Publicar un comentario